Xiaomi devices were migrated to a single rootfs layout, so we must set the
major compat version to 2 in order to prevent sysupgrading which brick any
devices that have not been migrated.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Now that interface names are set per physical markings, sysupgrading while
preserving config would cause devices that are not accessible over network
so make sure to increase the compat version to prevent sysupgrade with
config preservation.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is a temporary feed containing nonshared packages and kmods for
ipq807x until its an official target.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add workflow that will build the branch that is aimed at finally making
a PR to get the target into OpenWrt.
Its configured to run on self-hosted runner as free Github ones are slow,
so we are utilizing free Oracle Cloud Ampere quad-core VM-s.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Dynalink DL-WRX36 is a AX WIFI router with 4 1G and 1 2.5G ports.
Specifications:
• CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
• RAM: 1024MB of DDR3
• Storage: 256MB Nand
• Ethernet: 4x 1G RJ45 ports (QCA8075) + 1 2.5G Port (QCA8081)
• WLAN:
2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 1174 Mbps PHY rate
5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate
• 1x USB 3.0
• 1 gpio-controlled dual color led (blue/red)
• Buttons: 1x soft reset / 1x WPS
• Power: 12V DC jack
A poulated serial header is onboard (J1004)
the connector size is a 4-pin 2.0 mm JST PH.
RX/TX is working, u-boot bootwait is active, secure boot is enabled.
Notes:
- Serial is completely deactivated in the stock firmware image.
- This commit adds only single partition support, that means
sysupgrade is upgrading the current rootfs partition.
- Installation can be done by serial connection or
SSH access on OEM firmware
Installation Instructions:
Most part of the installation is performed from an initramfs image
running OpenWrt, and there are two options to boot it.
Boot initramfs option 1: Using serial connection (3.3V)
1. Stop auto boot to get to U-boot shell
2. Transfer initramfs image to device
(openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb)
Tested using TFTP and a FAT-formatted USB flash drive.
3. Boot the initramfs image
# bootm
Boot initramfs option 2: From SSH access on OEM firmware
1. Copy the initramfs image to a FAT-formatted flash drive
(tested on single-partition drive) and connect it to device USB port.
2. Change boot command so it loads the initramfs image on next boot
Fallback to OEM firmware is provided.
# fw_setenv bootcmd 'usb start && fatload usb 0:1 0x44000000 openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb && bootm 0x44000000; bootipq'
3. Reboot the device to boot the initramfs
# reboot
Install OpenWrt from initramfs image:
1. Use SCP (or other way) to transfer OpenWrt factory image
2. Connect to device using SSH (on a LAN port)
3. Check MTD partition table.
rootfs and rootfs_1 should be mtd18 and mtd20
depending on current OEM slot.
# cat /proc/mtd
4. Do a ubiformat to both rootfs partitions:
# ubiformat /dev/mtd18 -y -f /path_to/factory_image
# ubiformat /dev/mtd20 -y -f /path_to/factory_image
5. Set U-boot env variable: mtdids
# fw_setenv mtdids 'nand0=nand0'
6. Get offset of mtd18 to determine current OEM slot
- If current OEM slot is 1, offset is 16777216 (0x1000000)
- If current OEM slot is 2, offset is 127926272 (0x7a00000)
# cat /sys/class/mtd/mtd18/offset
7. Set U-boot env variable: mtdparts
If current OEM slot is 1, run:
# fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x1000000(fs),0x6100000@0x7a00000(fs_1)'
If current OEM slot is 2, run:
# fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x7a00000(fs),0x6100000@0x1000000(fs_1)'
8. Set U-boot env variable: bootcmd
# fw_setenv bootcmd 'setenv bootargs console=ttyMSM0,115200n8 ubi.mtd=rootfs rootfstype=squashfs rootwait; ubi part fs; ubi read 0x44000000 kernel; bootm 0x44000000#config@rt5010w-d350-rev0'
9. Reboot the device
# reboot
Note: this PR adds only single partition support, that means sysupgrade is
upgrading the current rootfs partition
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
The Edgecore EAP102 is a wall/ceiling mountable AP. The AP can be
powered by either PoE or AC adapter.
Device info:
- IPQ8071-A SoC
- 1GiB RAM
- 256MiB NAND flash
- 32MiB SPI NOR
- 2 Ethernet ports
- 1 Console port
- 2GHz/5GHz AX WLAN
- 2 USB 2.0 ports
Install instructions:
Prerequistes - TFTP server, preferrably within 192.168.1.0/24
Console cable plugged in (115200 8N1 no flow control)
1. Power on device and interrupt u-boot to obtain u-boot CLI
2. set serverip to IP address of the TFTP server:
`setenv serverip 192.168.1.250`
3. Download image from TFTP server:
`tftpboot 0x44000000 openwrt-ipq807x-generic-edgecore_eap102-squashfs-nand-factory.ubi`
4. Flash ubi image to both partitions and reset:
`sf probe
imxtract 0x44000000 ubi
nand device 0
nand erase 0x0 0x3400000
nand erase 0x3c00000 0x3400000
nand write $fileaddr 0x0 $filesize
nand write $fileaddr 0x3c00000 $filesize
reset`
Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
Xiaomi AX9000 is a premium 802.11ax "tri"-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
* RAM: 1024MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet:
* 4x1G RJ45 ports (QCA8075) with 1x status LED per port
* 1x2.5G RJ45 port (QCA8081) with 1x status LED
* WLAN:
* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
* 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate
* 5.8GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402Mbps PHY rate
* 5GHz: PCI based Qualcomm QCN9024 4x4@160MHz 802.11a/b/g/n/ac/ax 4804Mbps PHY rate
* USB: 1x USB3.0 Type-A port
* LED-s:
* System (Blue and Yellow)
* Network (Blue and Yellow)
* RGB light bar on top in X shape
* Buttons:
* 1x Power switch
* 1x Soft reset
* 1x Mesh button
* Power: 12V DC Jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/ax9000#obtain_ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd21 and mtd22 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd22 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd21 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Robert Marko <robimarko@gmail.com>
QNAP 301w is a AX WIFI router with 4 1G and 2 10G ports.
Specifications:
• CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
• RAM: 1024MB of DDR3
• Storage: 4GB eMMC (contains kernel and rootfs) / 8MB NOR
(contains art and u-boot-env)
• Ethernet: 4x 1G RJ45 ports + 2 10G ports (Aquantia AQR113C)
• WLAN:
2.4GHz: Qualcomm QCN5024 4x4 (40 MHz) 802.11b/g/n/ax 1174 Mbps PHY rate
5GHz: Qualcomm QCN5054 4x4 (80 MHz) or 2x2 (160 MHz) 802.11a/b/g/n/ac/ax 2402 PHY rate
• LEDs:
7 x GPIO-controlled dual color LEDs + 2 GPIO-controlled single color LEDs
• Buttons: 1x soft reset / 1x WPS
• Power: 12V DC jack
A poulated serial header is onboard.
RX/TX is working, bootwait is active, secure boot is not enabled.
SSH can be activated in the stock firmware, hold WPS button til the second beep
(yes the router has a buzzer)
SSH is available on port 22200, login with user admin and
password "mac address of the router".
Installation Instructions:
• obtain serial access (https://openwrt.org/inbox/toh/qnap/301w#serial)
• stop auto boot
• setenv serverip 192.168.10.1
• setenv ipaddr 192.168.10.10
• tftpboot the initramfs image
(openwrt-ipq807x-generic-qnap_301w-initramfs-fit-uImage.itb)
• bootm
• make sure that current_entry is set to "0":
"fw_printenv -n current_entry" should be print "0". If not,
do "fw_setenv current_entry 0"
• copy openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
to the device to /tmp folder
• sysupgrade -n /tmp/openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
this flashes openwrt to the first kernel and rootfs partition (mmcblk0p1 / mmcblk0p4)
• reboot
Note: this leaves the second kernel / rootfs parition untouched. So if you want
to go back to stock, stop u-boot autoboot, "setenv current_entry 1" ,
"saveenv", "bootipq".
Stock firmware should start from the second partition.
Then do a firmwareupgrade in the stock gui, that should overwrite the openwrt
in the first partitions
Make 10G Aquantia phy's work:
The aquantia phy's need a firmware to work. This can either be loaded
in linux with a userspace tool or in u-boot.
I was not successfull to load the firmware in linux (aq-fw-download) but luckily there is
aq_load_fw available in u-boot. But first the right firmware needs to write
to the 0:ETHPHYFW mtd partition (it is empty on my device)
Grab the ethphy firmware image from:
https://github.com/kirdesde/nbg7815_gpl/blob/master/target/linux/ipq/ipq807x_64/prebuilt_images/AQR_ethphyfw.mbn
and scp that to openwrt.
Check the 0:ETHPHYFW partition number:
cat /proc/mtd|grep "0:ETHPHYFW", should be mtd10.
Backup the 0:ETHPHYFW partition:
dd if=/dev/mtd10 of=/tmp/ethphyfw.backup, scp ethphyfw.backup to a save place.
Write the new firmware image to the 0:ETHPHYFW partition:
"mtd erase /dev/mtd10", "mtd -n write AQR_ethphyfw.mbn /dev/mtd10".
Reboot to u-boot.
Check if aq_load_fw is working:
"aq_load_fw 0", that checks the firmware and if successfull,
loads iram and dram to one of the aquantia phy's.
If that worked, add the aq_load_fw to the bootcmd:
setenv bootcmd "aq_load_fw 0 && aq_load_fw 8 && bootipq"
"saveenv"
"reset"
Board reboots and the firmware load to both phy's should start and
then openwrt boots.
Check if the 10G ports work.
Note: lan port labeled "10G-2" is configured as WAN port as per default.
All other port are in the br-lan. This can be changed in the network config.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Edimax CAX1800 is a 802.11 ax dual-band AP
with PoE. AP can be ceiling or wall mount.
Specifications:
• CPU: Qualcomm IPQ8070A Quad core Cortex-A53 1.4GHz
• RAM: 512MB of DDR3
• Storage: 128MB NAND (contains rootfs) / 8MB NOR (contains art and uboot-env)
• Ethernet: 1x 1G RJ45 port (QCA8072) PoE
• WLAN:
2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
5GHz: Qualcomm QCN5054 2x2 802.11a/b/g/n/ac/ax 1201 PHY rate
• LEDs:
3 x GPIO-controlled System-LEDs
(form one virtual RGB System-LED)
black_small_square Buttons: 1x soft reset
black_small_square Power: 12V DC jack or PoE (802.3af )
An unpopulated serial header is onboard.
RX/TX is working, bootwait is active, secure boot is not enabled.
SSH can be activated in the stock firmware, but it drops only
to a limited shell .
Installation Instructions:
black_small_square obtain serial access
black_small_square stop auto boot
black_small_square tftpboot the initramfs image (serverip is set to 192.168.99.8 in uboot)
black_small_square bootm
black_small_square copy openwrt-ipq807x-generic-edimax_cax1800-squashfs-nand-factory.ubi
to the device
black_small_square write the image to the NAND:
black_small_square cat /proc/mtd and look for rootfs partition (should be mtd0)
black_small_square ubiformat /dev/mtd0 -f -y openwrt-ipq807x-generic-edimax_cax1800-squashfs-
nand-factory.ubi
black_small_square reboot
Note: Device is not using dual partitioning (NAND contains other partitions
with different manufacture data etc.)
Draytek VigorAP 960C and Lancom LW-600 both look similar, but I haven't checked them.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Redmi AX6 is a budget 802.11ax dual-band router/AP
Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 128MB NAND
* Ethernet: 4x1G RJ45 ports (QCA8075)
* WLAN:
* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LEDs:
* System (Blue/Yellow)
* Network (Blue/Yellow)
*Buttons: 1x soft reset
*Power: 12V DC jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_redmi_ax6_ax3000#ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Zhijun You <hujy652@gmail.com>
Xiaomi AX3600 is a budget 802.11ax dual-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet: 4x1G RJ45 ports (QCA8075) with 1x status LED per port
* WLAN:
* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LED-s:
* System (Blue and Yellow)
* IoT (Blue)
* Network (Blue and Yellow)
* Buttons: 1x Soft reset
* Power: 12V DC Jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_ax3600#obtain_ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
Include NSS DP and SSDK (Pulled as dependency) by default on ipq807x to
provide wired networking to the target.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm NSS-DP is as its name says Qualcomms ethernet driver for the NSS
subsystem (Networking subsystem) built-into various Qualcomm SoCs.
It has 2 modes of operation:
* Without NSS FW and rest of code required for offloading
This is the one that we will use as the amount of kernel patching required
for NSS offloading and the fact that its not upstreamable at all makes it
unusable for us.
Driver in this mode is rather basic, it currently only offers NAPI GRO
(Added by us as part of the fixup) and basically relies on the powerfull
CPU to get good throughput.
* With NSS FW and rest of code required for offloading
In this mode, driver just registers the interfaces and hooks them into
NSS-ECM to allow offloading.
This mode is not viable for use in OpenWrt due to reasons already described
above.
This driver is required for ipq807x to have wired networking until a better
one is available, so lets add the fixed-up version for 5.15 for now.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm SSDK is driver for Qualcomm Atheros switches and PHY-s.
It is quite complicated and used by rest of the Qualcomm SDK stack for
anything switch or PHY related.
It is required for IPQ807x support as currently, there is no better driver
for the built-in switch or UNIPHY.
So, lets add the fixed-up version that supports kernel 5.15 for use on
ipq807x target until a better driver is available.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is the follow up to the PCI support commit now providing support for
AHB variant as well, though currently only for ipq807x as that is only
OpenWrt supported SoC ath11k supports as well.
Currently, we are disabling coldboot calibration on ipq807x as it does not
work, there is a remoteproc bug that makes it come late out of reset so
disable coldboot until that is fixed.
Also, as ath11k is quite memory hungry, we are introducing a config option
to use the limits for 512MB of RAM, similar to what QCA does downstream but
in way simpler and cleaner way so that 512MB save some RAM.
512MB profile is also set as the default for now.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm Atheros IPQ807x is a modern WiSoC featuring:
* Quad Core ARMv8 Cortex A-53
* @ 2.2 GHz (IPQ8072A/4A/6A/8A) Codename Hawkeye
* @ 1.4 GHz (IPQ8070A/1A) Codename Acorn
* Dual Band simultaneaous IEEE 802.11ax
* 5G: 8x8/80 or 4x4/160MHz (IPQ8074A/8A)
* 5G: 4x4/80 or 2x2/160MHz (IPQ8071A/2A/6A)
* 5G: 2x2/80MHz (IPQ8070A)
* 2G: 4x4/40MHz (IPQ8072A/4A/6A/8A)
* 2G: 2x2/40MHz (IPQ8070A/1A)
* 1x PSGMII via QCA8072/5 (Max 5x 1GbE ports)
* 2x SGMII/USXGMII (1/2.5/5/10 GbE) on Hawkeye
* 2x SGMII/USXGMII (1/2.5/5 GbE) on Acorn
* DDR3L/4 32/16 bit up to 2400MT/s
* SDIO 3.0/SD card 3.0/eMMC 5.1
* Dual USB 3.0
* One PCIe Gen2.1 and one PCIe Gen3.0 port (Single lane)
* Parallel NAND (ONFI)/LCD
* 6x QUP BLSP SPI/I2C/UART
* I2S, PCM, and TDMA
* HW PWM
* 1.8V configurable GPIO
* Companion PMP8074 PMIC via SPMI (GPIOS, RTC etc)
Note that only v2 SOC models aka the ones ending with A suffix are
supported, v1 models do not comply to the final 802.11ax and have
lower clocks, lack the Gen3 PCIe etc.
SoC itself has two UBI32 cores for the NSS offloading system, however
currently no offloading is supported.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is a temporary workaround for supporting multiple cards or
AHB+PCI until upstream sorts this out.
Note that this does break cards like QCA6390 though.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This adds the MHI SBL callback that ath11k will utilize in order to
support multiple PCI cards or AHB+PCI combo which currently does not
work due to QRTR ID-s conflicting.
This is a prerequisite for the mac80211 patch targeting ath11k as it
uses MHI from kernel.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Package ath11k firmware for AHB devices as well as QCN9074 which is a non
consumer card targeted as a companion for QCA WiSoC-s.
linux-firmware is always out of date for these, so fetch them from Kalle-s
repo like we do for ath10k.
Signed-off-by: Robert Marko <robimarko@gmail.com>
While Linus is fine with longer code lines, comments should still be
within the 80 char limit.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
This is an RTL8393-based switch with 48 RJ-45 and 2 SFP ports.
Hardware
--------
SoC: Realtek RTL8393M
RAM: 128MB DDR3 (Nanya NT5CC64M16GP-DI)
FLASH: 8MB NOR (Macronix MX25L6433F)
ETH: 48x 10/100/1000 Mbps RJ-45 Ethernet
SFP: 2x SFP
BTN:
- 1x Reset button
LEDS:
- 50x Green-Amber leds: lan/sfp status
- 1x Green led: power (Always on)
UART:
- 115200-8-N-1 (CN3, pin-out on PCB)
Everything works correctly except for the 2 SFP ports that are not
working unless you enable it every boot in U-Boot with the command:
rtk network on
Installation
------------
You can install Openwrt using one of the following methods.
Warning: flashing OpenWrt will delete your current configuration.
Warning 2: if the -factory.bix file is not available anymore, you must
follow Method 2.
Method 1:
Check the firmware version currently running on your switch. If you are
running FW V1.0.1.10 or greater, you have to download the firmware
V1.0.1.8 from Netgear website and then flash this version. When the
switch restarts, it should be on version V1.0.1.8. Now you can get the
OpenWrt -factory.bix file and then flash it using the OEM web interface.
Method 2 (requires the UART connection):
Boot the -initramfs-kernel.bin image from U-Boot with these commands:
rtk network on;
tftpboot 0x8f000000 openwrt-realtek-rtl839x-netgear_gs750e-initramfs-kernel.bin;
bootm;
And then flash the -sysupgrade.bin file from OpenWrt.
Revert to stock
---------------
Get the stock firmware from the Netgear website and flash it using the
OpenWrt web interface. Remember to not keep the current configuration
and check the "Force upgrade" checkbox
Once reverted to stock the firmware could complain in the UART console
about mtdblock3 and/or mtdblock4 not being mounted correctly but it
seems to work anyway without any problems. Sample error:
mount: Mounting /dev/mtdblock4 on /mntlog failed: Input/output error
If you want to get rid of these error messages you can boot the
-initramfs-kernel.bin image from U-Boot with these commands:
rtk network on;
tftpboot 0x8f000000 openwrt-realtek-rtl839x-netgear_gs750e-initramfs-kernel.bin;
bootm;
And then erase the corresponding partitions using the command:
For mtdblock3:
mtd erase jffs2_cfg
For mtdblock4:
mtd erase jffs2_log
Now you can reboot the switch and the errors should be gone
Note
----
To get the SFP ports fully working, all the right GPIOs must be found.
In the GPL sources I found these:
- GPIO_14: SFP_TX_DIS1;
- GPIO_19: SFP_TX_DIS0;
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
FACTORY_SIZE is used as a device recipe variable on both the D-Link
DIR-825-B1 and Trendnet TEW-673GRU, but is not listed as a device
variable, neither globally, nor for ath79. Being assigned the same
value, this probably hasn't caused any issues.
Add FACTORY_SIZE to the global list DEFAULT_DEVICE_VARS, to ensure the
variable is reset for every device, and to allow it to be used outside
of the ath79 target.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Changes from version 0.17.1 to version 0.17.2:
- fix incorrect version in 0.17.1
Changes from version 0.17.0 to version 0.17.1:
- Also pass STRIP to the tests
- Fix Out-of-bounds read in the function modifySoname
- Split segment size fix
Signed-off-by: Linhui Liu <liulinhui36@gmail.com>
Support for MT7981 and MT7986 has been merged, remove patches.
Tested on a couple of MT7986, MT7622 and MT7623 boards.
MIPS builds are untested.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Currently, ath11k will crash the crash if we try to bringup the monitor
mode interface.
Luckily, it has already been fixed upstream, so backport the patches
fixing it.
Fixes: 93ae4353cd ("mac80211: add ath11k PCI support")
Signed-off-by: Robert Marko <robimarko@gmail.com>
Allign dl_github_archieve.py to 8252511dc0
change. On supported system the sigid bit is applied to files and tar
archieve that on tar creation. This cause unreproducible tar for these
system and these bit should be dropped to produce reproducible tar.
Add the missing option following the command options used in other
scripts.
Fixes: 75ab064d2b ("build: download code from github using archive API")
Suggested-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
Tested-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
There is currently a problem with making reproducible version of lldpd.
The tool version is generated based on 3 source:
1. .dist-version file in release tar
2. git hash with presence of .git directory
3. current date
Using the codeload tar from github results in getting the repo without
the .git directory and since they are not release tar, we don't have
.dist-version. This results in having lldpd bin with a version set to
the current build time.
Switch to release tar so that we correctly have a .dist-version file and
the version is not based on the build time.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
This fixes a security problem in ksmbd. It currently has the
ZDI-CAN-18259 ID assigned, but no CVE yet.
Backported from:
8824b7af40cc4f3b5a6a
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Upstream commit [1] included in the Linux kernel version 6.2 was
backported to Linux kernels 6.1.4, 6.0.18. It should be possible that it
is going to be backported even to the 5.15 series, but before it happens,
let's include it here.
It was discovered that on SOC Marvell Armada 3720, which is using e.g.
Turris MOX, and if you are also using it with older ARM Trusted Firmware
v1.5, it is not possible to detect connected USB 3.0 devices, but they
are working just fine when connected with USB 2.0 cable. This patch
fixes it.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/drivers/phy/marvell/phy-mvebu-a3700-comphy.c?id=b01d622d76134e9401970ffd3fbbb9a7051f976a
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Michal Hrusecky <michal.hrusecky@turris.com>
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
[improve commit description, added tag to the patch]
Test each target if there are additional changes than target/linux.
This is needed to do wide test with changes to kmods, include/kernel and
changes to the workflow files.
While at it also cleanup and rework the code to drop duplication.
Also drop since_last_remote_commit to better track changes.
Fixes: 04ada8bc41 ("CI: kernel: build only changed targets")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
We've few low spec (make -j3) build workers attached to the 22.03
buildbot instance which from time to time exhibit following build
failure during image generation (shortened for brewity):
+ dd bs=512 if=root.ext4 of=openwrt-22.03...sdcard.img.gz.img
dd: failed to open 'root.ext4': No such file or directory
Thats happening likely due to the fact, that on buildbots we've
`TARGET_PER_DEVICE_ROOTFS=y` which produces differently named filesystem
image in the SD card image target dependency chain:
make_ext4fs -L rootfs ... root.ext4+pkg=68b329da
and that hardcoded `root.ext4` image filename becomes available from
other Make targets in the later stages. So lets fix this issue by using
IMAGE_ROOTFS Make variable which should contain proper path to the root
filesystem image.
Fixing remaining subtargets ommited in commit 5c3679e39b ("at91:
sama7: fix racy SD card image generation").
Fixes: 5c3679e39b ("at91: sama7: fix racy SD card image generation")
Signed-off-by: Petr Štetiar <ynezz@true.cz>